

Essential Questions:

What do you already know about waves?

What knowledge of waves is important?

How do waves get classified?

What can we measure?

What can we calculate / predict?

Where should we start?

Where should we start?

What is a wave?

What is a WAVE?

A disturbance (vibration) that travels through a medium

A wave transmits ENERGY <u>not</u> the medium

Where should we start?

How do we classify waves?

What is a wave? How do we classify waves?

Read the Physics Classroom (PCR)

SKIM Waves: Lesson 1 a-c (5 min or less)

Record the most important info on white board (10-15 min)

AFTER notes are complete, use the *check your understanding* (CYU) questions on pages b and c to determine if your notes cover the basic info (10-15 min)

Do you remember?

Contrast mechanical waves with electromagnetic waves.

What is a medium? Give an example.

Name two categories of waves. Give an example of each.

Types of Mechanical Waves

Transverse: the medium oscillates perpendicular to the propagation of the wave

Longitudinal: the medium oscillates parallel to the propagation of the wave (ex: sound)

Surface: the medium oscillates in a circle – this is a combination of the other two types of waves

What's next?

What's next?

What are the features of waves?

What can we measure?

What are the features and measures?

Read the Physics Classroom (PCR) Waves: Lesson 2 a&b (5-10min)

Record information about wave FEATURES in notes (5-10 min)

Create a Word Web for the three NEW MEASUREMENTS (already have Period)

AFTER notes are complete, use the *check your understanding* (CYU) questions on pages a and b to determine if your notes cover the basic info (10-15 min)

Wave Features

medium: material that transports a mechanical wave

	_wave)	
trough: bottom (of a	wave)	
compression: medium is dens	e (wave)	
rarefaction: medium has low o	density (wave)	

Wave Measurements

 λ – wavelength: the distance from crest to crest (m)

T – period: the duration for a complete wave to pass a fixed position (s)

f – frequency: how many waves pass a given point each second (Hz)

A – Amplitude: the distance from the *equilibrium position* to a crest or trough

the distance from crest to crest or trough to trough

 λ : wavelength

SI unit: meter (m)

alternate units: cm, feet

Anatomy of a Wave

Anatomy of a wave

Waves and ENERGY

 Waves transmit energy. Which measurement is most closely linked to the amount of energy the wave transmits?

PHET Simulation

- If you are finished the assignment early, you will benefit by:
 - Googling PhET
 - Going to Physics Simulations
 - Choosing Sound & Waves
 - Selecting Wave Interference
 - Using the first tab (Water) to investigate what affects the wave measurements

PHET Simulation

What is the mathematical relationship between the...

What is the mathematical relationship between the...

amplitude (m) of a wave and the energy (J) it transmits?

energy (J) in a wave and its amplitude (m)?

Energy vs Amplitude What is the relationship?

Amplitude (m)	Energy (J)
0.1	10
0.2	39
0.3	88
0.4	157
0.5	244

Conclusion

- For a wave, the ______ is(_____)proportional to the ______ (______)as shown by the equation:______
- This means if the _____ is ______ then the ______ will ______.
- For example...